Photon Documentation
Release 0.4

Frieder Griesshammer

October 14, 2015

Contents

4

Photon Intro

1.1 Examples

Installation

Structure

3.1 Thecore,
32 Tools
33 Utility. oo

Info

Python Module Index

Photon Documentation, Release 0.4

Welcome to the Photon Documentation.

Contents 1

Photon Documentation, Release 0.4

2 Contents

CHAPTER 1

Photon Intro

It could be best described as a shell backend as python module

Contributions are highly welcome ', also feel free to use the issue tracker if you encounter any problems.
Repository github.com/spookey/photon
Documentation photon.readthedocs.org

Package pypi.python.org/pypi/photon_core

1.1 Examples

The /examples directory contains some basic receipts on how to use Photon in your scripts.
Photon helps at Freifunk MWU to solve some tasks:
* See our collection of backend-scripts for some scripts using photon, running in production.

* To automatically compile gluon firmware for routers, we wrote the gluon builder.

! Teach me how to write good code, help me to improve.

http://github.com/spookey/photon/issues
http://github.com/spookey/photon/
http://photon.readthedocs.org/en/latest/
https://pypi.python.org/pypi/photon_core/
http://freifunk-mwu.de/
https://github.com/freifunk-mwu/backend-scripts
https://github.com/freifunk-mwu/gluon-builder-ffmwu

Photon Documentation, Release 0.4

4 Chapter 1. Photon Intro

CHAPTER 2

Installation

Photon is available as package on pypi, it is called phot on_core .

You can install/update the package via pip3 *:

‘pip3 install photon_core ‘

’pipiﬂ install -U photon_core ‘

Bleeding-Edge

Development is still at an very early stage, expect anything to change completely in near future.
As long we still have a leading zero in the version (see info file) use pip3 with the ——pre switch:

pip3 install -U photon_core —--pre

Versions

Tags in the git repository will be released as a new pypi package version. Versions of a pypi package has always
it’s git tag. And vice versa.
Not every version increase will be tagged/released. I will only do so if I feel the urge to do so.

! because photon itself was already taken :/
2 Photon is written in python3 ~ be careful with easy_install

Photon Documentation, Release 0.4

6 Chapter 2. Installation

CHAPTER 3

Structure

Photon aimes to be modular and can be divided into The core, it’s Utility and some Tools, provided through Photon
itself.

If you just want to use Photon in your Scripts as a normal User you may especially be interested in the parts Photon
and Tools.

3.1 The core

All three modules depend on the Utility:

See also:

Files, Locations, Structures, System

Settings and Meta could be used independently or both together.

Bundling Settings and Meta together plus adding the Tools, Photon provides a interface to use in your scripts.
See also:

Git Tool, Mail Tool, Ping Tool, Signal Tool

3.1.1 Settings

class settings.Settings (defaults, config="config.yaml’, verbose=True)
Settings is a class which provides access to compiled settings loaded from YAML-files.

The YAML-files will be read with specific loaders which enables certain logic within the configuration. It is
possible to:

eInsert references to existing fields via anchors and ! str_joinor !loc_join
eInsert keywords like hostname or timestamp using ! str_join
*Combine path-segments using ! loc_join
eInsert keywords like home_dir or conf_dir using ! loc_join
It is also possible to import or merge further content.
Parameters

* defaults - The initial configuration to load. Will be located using
util.locations.search _location ()

Photon Documentation, Release 0.4

The common way is to use a short-filename to locate it next to the script using Photon.

Can also be a full path.

Can also passed directly as a dict

Bring your own defaults! Tears down (using util.system.shell_notify () with
state set to True) whole application if not found or none passed.

* config — Where to store the loaded output from the defaults. Will be located using
util.locations.search location ()

— File must already exist, will be created in ‘conf_dir’ from
util.locations.get_locations () otherwise

* Therefore use a short name (or full path) if one should be created

Note: The last loaded file wins

The config is intended to provide a editable file for the end-user

If a value differs from the original values in defaults, the value in config wins
+ Other values which not exist in config will be set from defaults

If a value in config contains a loader call which expresses the same as the value in
defaults it will be skipped.

Be careful using timestamp s in a config. The timestamp of the first launch will always
be used.

Simply delete all lines within the config to completely reset it to the defaults

Can be skipped by explicitly setting it to None

* verbose — Sets the verbose flag for the underlying Utility functions
See also:

util.structures.yaml_str_join()andutil.structures.yaml_loc_join () aswellasthe
Example Settings File

get
Returns Current settings

load (skey, sdesc, sdict=None, loaders=None, merge=False, writeback=False)
Loads a dictionary into current settings

Parameters

» skey — Type of data to load. Is be used to reference the data in the files sections within
settings

* sdesc — Either filename of yaml-file to load or further description of imported data when
sdict s used

* sdict (dict) — Directly pass data as dictionary instead of loading it from a yaml-file.
Make sure to set skey and sdesc accordingly

loaders (list) — Append custom loaders to the YAML-loader.

* merge — Merge received data into current settings or place it under skey within meta

8 Chapter 3. Structure

http://docs.python.org/3/library/stdtypes.html#dict
http://docs.python.org/3/library/stdtypes.html#list

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Photon Documentation, Release 0.4

* writeback — Write back loaded (and merged/imported) result back to the original file.
This is used to generate the summary files

Returns The loaded (or directly passed) content
See also:

util.structures.yaml_str_join() and util.structures.yaml_loc join|()

Example Settings File

defaults.sample.yaml

The syntax of the settings files is YAML:

01l_syntax:
dictionary: 'value is a string'
dictionary_with_list: ['value', 'is', 'a', 'list']
dictionary_with_list2:
- this
- is
— another
- list

[
YAML supports backreferences by anchors.

First yo have define a dictionary value as anchor:
02_anchor:
prefix: &MY PRFX 'Photon is a software that '

Then use them together with !str_join:
poll:
vay: !str_join [+«MY PRFX, 'realy helps me']
nay: !str_join [+MY PRFX, 'sucks']

This turns into:
yay: Photon is a software that really helps me
nay: Photon is a software that sucks
(The anchor ('&'—-sign) must appear before the Reference ('x'-sign) in the YAML-file.

S W R R W

(Note the whitespace.)

!str_join can listen to the keywords - 'hostname' & 'timestamp':

03_keywords:

message:
- Istr_join ['my machine "', 'hostname', '" is the best']
- !str_join ['yours, herbert. date: ', 'timestamp']

This turns into:
message:

3.1. The core 9

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

Photon Documentation, Release 0.4

HH R I

04_locations:

He

05_combined:

#
#
#
#
#
#

- my machine "blechschachtel" is the best
- 'yours, herbert. date: YYYY.MM.DD-HH.MM.SS'
(with current date expanded)

Use !loc_join to combine files and paths:

simple_file: !loc_join ['/', 'usr', 'local', 'bin', 'myscript.sh']
same_simple_file: !loc_join ['/usr/local/bin', 'myscript.sh']
This turns into:
simple file: /usr/local/bin/myscript.sh
same_simple file: /usr/local/bin/myscript.sh

But be careful with leading '/'-signs:
not_the_simple_file: !loc_join ['/usr/local', '/bin', 'myscript.sh']
This turns into not what we wanted:
not_the_simple_file: /bin/myscript.sh

It can also listen to keywords:
in_the_home_dir: !'loc_join ['home_dir', 'my_directory']
in_the_home_dir: /home/herbert/my_directory

Combine them alltogether:

name: &MY _ASS my_awesome_server_software

main: &OH_MY !loc_join ['home_dir', +MY ASS, 'main']

main_run: !loc_join [+«OH MY, 'run.py'l]

backup_dir: 'loc_join ['data_dir', MY ASS, !str_join ['backup-', 'timestamp']]

git-remote: !str_join

- 'https://github.com/userd404/"'
- *MY_ASS

- .git

This turns into:
name: my_awesome_server._software
main: /home/herbert/my_awesome_server_software/main
main_run: /home/herbert/my_awesome_server_software/main/run.py
backup_dir: /home/herbert/.local/share/photon/my_awesome_server_software/backup—Y}
git-remote: https://github.com/user404/my_awesome_server_software.git

'YY.MM.DD—-HH.]

See also:

The wikipedia page on YAML for some syntax reference.

See also:

e loc_join: util.structures.yaml_loc_join ()

10

Chapter 3. Structure

http://en.wikipedia.org/wiki/YAML

Photon Documentation, Release 0.4

(get locations by keyword and join paths)

e Istr_join: util.structures.yaml_str_join()
(get variables by keyword and join strings)
See also:

Example Settings File, Mail Tool Example, Ping Tool Example

3.1.2 Meta

class meta .Meta (meta="meta.json’, verbose=True)
Meta is a class which bounds to an actual json-file on disk. It provides a logger storing the entries in that
json-file.

It is also possible to import contents. By staging out to a different directory meta-files are left behind for further
debugging or to see what was going on.

Parameters
¢ meta — Initial, clean meta file to use. See stage () for more
* verbose — Sets the verbose flag for the underlying Utility functions

load (mkey, mdesc, mdict=None, merge=False)
Loads a dictionary into current meta

Parameters

* mkey — Type of data to load. Is be used to reference the data from the ‘header’ within
meta

* mdesc — Either filename of json-file to load or further description of imported data when
mdict is used

* mdict (dict) — Directly pass data as dictionary instead of loading it from a json-file. Make
sure to set mkey and mdesc accordingly

* merge — Merge received data into current meta or place it under ‘import’ within meta
Returns The loaded (or directly passed) content
log
Parameters elem— Add a new log entry to the meta.
* Can be anything.

e The log is a dictionary with keys generated from the output of
util.system.get_timestamp () and elem as value

Returns Current meta

stage (name, clean="False)
Switch stage

Parameters

* name - Filename of new meta (file. Will be located using
util.locations.search location()

— File must not already exist, will be created in ‘data_dir’ from
util.locations.get_locations()

— Can also be a full path to place it anywhere desired

3.1. The core 11

http://docs.python.org/3/library/stdtypes.html#dict

Photon Documentation, Release 0.4

* clean — What to do with preexisting meta files?
— False: Merge current meta with preexisting one

— True: Replace preexisting meta with current one

3.1.3 Photon
class photon.Photon (defaults, config="config.yaml’, meta="meta.json’, verbose=True)
Photon uses 7he core and some functions from Utility in its m () -method.
The m () -method itself is used in each tool to interact with photon to:
sLaunch shell commands, and receive the results
*Add messages to the meta-file
*Show the messages if necessary
*Tear down application completely in case of any serious problems

Further, Photon provides direct handlers for settings. Settings and meta.Meta and a handler for each
tool from 7ools by it’s methods.

Parameters
* defaults — Pass defaults down to settings.Settings
e config — Pass config down to settings.Settings
* meta — Pass meta down to meta.Meta

* verbose — Sets the global verbose flag. Passes it down to the underlying Utility functions
and The core

Variables
* settings — The settings handler initialized with defaults and config
* meta — The meta handler initialized with meta
At startup the loaded settings are imported into meta
git_handler (*args, **kwargs)
Returns A new git handler
See also:
Git Tool

m (msg, state=False, more=None, cmdd=None, critical=True, verbose=None)
Mysterious mega method managing multiple meshed modules magically

Note: If this function is used, the code contains facepalms: m (

oIt is possible to just show a message, or to run a command with message.

*But it is not possible to run a command without a message, use the verbose-flag to hide your debug
message.
Parameters

* msg — Add a message. Shown depending on verbose (see below)

12 Chapter 3. Structure

Photon Documentation, Release 0.4

e state — Pass state downto util.system.shell_notify ()
* more — Pass more downto util.system.shell notify()
e cmdd (dict) — If given, util.system.shell run () islaunched with it’s values

e critical - If set to True: Tears down (using util.system.shell _notify()
with state set to True) whole application on failure of cmdd contents.

— Similar to util.system.shell_run () critical-flag
* verbose - Overrules parent’s class verbose-flag.
— If left to None, the verbose value Photon was started with is used
— Messages are shown/hidden if explicitly set to True/False
Returns
A dictionary specified the following:
* ‘more’: more if it is not a dictionary otherwise it gets merged in if more is specified
e The outputof util.system.shell_ run () gets merged in if cmdd is specified
e ‘failed’: True if command failed
util.system.shell_notify () is used with this dictionary to pipe it’s output into
meta.Meta.log () before returning.
mail_handler (punchline=None, add_meta=False, add_settings=True, *args, **kwargs)
Parameters
* punchline — Adds a punchline before further text
* add_meta — Appends current meta to the mail
* add_settings — Appends current settings to the mail
Returns A new mail handler
See also:
Mail Tool
ping handler (*args, **kwargs)
Returns A new ping handler
See also:
Ping Tool

s2m
Imports settings to meta

signal_handler (*args, **kwargs)
Returns A new signal handler
See also:
Signal Tool
template_handler (*args, **kwargs)

Returns A new template handler

3.1. The core 13

http://docs.python.org/3/library/stdtypes.html#dict

Photon Documentation, Release 0.4

See also:
Template Tool

photon.check_m(pm)
Shared helper function for all Tools to check if the passed m-function is indeed photon.Photon.m()

Params pm Suspected m-function

Returns Now to be proven correct m-function, tears down whole application otherwise.

3.2 Tools

This are the tools for the user using Photon. You should not directly use them, instead they will get provided to you
by Photon.

See also:

Settings, Meta, Photon

Some functionality here is bought from the Utility:
See also:

Files, Locations, Structures, System

3.2.1 Git Tool

class tools.git.Git (m, local, remote_url=None, mbranch=None)
The git tool helps to deal with git repositories.

Parameters
* local - The local folder of the repository
— If None given (default), it will be ignored if there is already a git repo at local
— If no git repo is found at local, a new one gets cloned from remote_url
* remote_url — The remote URL of the repository

— Tears down (using util.system.shell _notify () with state setto True) whole
application if remote_url is set to None but a new clone is necessary

* mbranch — The repository’s main branch. Is set to master when left to None

__checkout (treeish)
Helper function to checkout something

Parameters treeish — String for ‘tag‘, ‘branch’, or remote tracking ‘-B banch’

_get_branch (remotes=False)
Helper function to determine current branch

Parameters remotes — List the remote-tracking branches

_get_remote (cached=True)
Helper function to determine remote

Parameters cached — Use cached values or query remotes

_log (num=None, format=None)
Helper function to receive git log

14 Chapter 3. Structure

Photon Documentation, Release 0.4

Parameters
e num — Number of entries

* format — Use formatted output with specified format string

—pull()
Helper function to pull from remote
branch
Parameters branch — Checks out specified branch (tracking if it exists on remote). If set to
None, ‘master’ will be checked out
Returns The current branch (This could also be ‘master (Detatched-Head)’ - Be warned)
cleanup

Commits all local changes (if any) into a working branch, merges it with ‘master’.
Checks out your old branch afterwards.

Tears down (using util.system.shell notify () with state set to True) whole application if
conflicts are discovered

commit
Parameters tag — Checks out specified commit. If set to None the latest commit will be
checked out
Returns A list of all commits, descending
local
Returns The local folder of the repository
log

Returns The last 10 commit entries as dictionary

e‘commit’: The commit-ID
*‘message’: First line of the commit message
publish
Runs cleanup () first, then pushes the changes to the remote.
remote
Returns Current remote
remote_url
Returns The remote URL of the repository
short_commit
Returns A list of all commits, descending
See also:
commit
status

Returns Current repository status as dictionary:

e‘clean’: True if there are no changes False otherwise

. Tools 15

Photon Documentation, Release 0.4

*‘untracked’: A list of untracked files (if any and not ‘clean’)
*‘modified’: A list of modified files (if any and not ‘clean’)
*‘deleted’: A list of deleted files (if any and not ‘clean’)

‘conflicting’: A list of conflicting files (if any and not ‘clean’)

tag
Parameters tag — Checks out specified tag. If set to None the latest tag will be checked out

Returns A list of all tags, sorted as version numbers, ascending

3.2.2 Mail Tool

class tools.mail .Mail (m, fo, sender, subject=None, cc=None, bcc=None)
The Mail tool helps to send out mails.

Parameters
* to — Where to send the mail (‘user@example.com®)
* sender — Yourself (‘me@example.com®)

— set a reverse DNS entry for example.com so your mail does not get caught up in
spamfilters.

* subject - The subject line

* cc—One or alist of CCs

* bee — One or a list of BCCs

send
Returns

A dictionary with the following:
» ‘sender’: The sender
* ‘recipients’: All recipients, compiled from fo, cc and bcc
e ‘result’: The smtplib.SMTP.sendmail ()-result

 ‘exception’: The exception message (if any)

Note: You need to have a postfix/sendmail running and listening on localhost.

text
Parameters text — Add some more text
Returns All text & headers as raw mail source

Mail Tool Example

mail.sample.yaml

16 Chapter 3. Structure

mailto:'user@example.com
mailto:'me@example.com
http://docs.python.org/3/library/smtplib.html#smtplib.SMTP.sendmail

20

21

22

23

24

25

26

27

28

29

Photon Documentation, Release 0.4

mail:
recipient: youl@example.com
sender: meQlRexample.com
subject: 'Fire!'
punchline: 'Dear Sir or Madam, I am writing to inform you about a fire in the buildi

mail.sample.py

from photon import Photon
photon = Photon('mail.sample.yaml')
settings = photon.settings.get['mail']

mail = photon.mail_handler (
to=settings|['recipient'],
sender=settings|['sender'],
subject=settings|['subject'],
punchline=settings|['punchline'],
add_meta=True

#H##
Shows the message source so far
print (mail.text)

###

Add some more text (do this as often as you like):
mail.text = ""'

Dear Sir or Madam,

bla bla

No, that's too formal..

#H##
Guess what happens here:

mail.send

See also:

Example Settings File, Mail Tool Example, Ping Tool Example

3.2.3 Ping Tool
class tools.ping.Ping (m, six=False, net_if=None, num=5, max_pool_size=None)
The Ping tool helps to send pings, returning detailed results each probe, and calculates a summary of all probes.
Parameters
* six — Either use ping or ping6
* net_if — Specify network interface to send pings from

* num — How many pings to send each probe

3.2. Tools 17

ng

Photon Documentation, Release 0.4

* max_pool_size — Hosts passed to probe () in form of a list, will be processed in
parallel. Specify the maximum size of the thread pool workers here. If skipped, the number
of current CPUs is used

probe
Parameters hosts — One or a list of hosts (URLs, IP-addresses) to send pings to
* If you need to check multiple hosts, it is best to pass them together as a list.
* This will probe all hosts in parallel, with max_pool_size workers.
Returns A dictionary with all hosts probed as keys specified as following:
*‘up’: True or False depending if ping was successful
*‘loss’: The packet loss as list (if ‘up’)
*‘ms’: A list of times each packet sent (if ‘up’)
*‘rtt’: A dictionary with the fields avg, min, max & stddev (if ‘up’)
status
Returns A dictionary with the following:
*‘num’: Total number of hosts already probed
*‘up’: Number of hosts up
*‘down’: Number of hosts down
*‘ratio’: Ratio between ‘up’/’down’ as float
Ratio:

*100% up==1.0

*10%up==0.1

*0%up==0.0
Ping Tool Example

ping.sample.yaml

hosts:

addresses:

- '127.0.0.1"
- '127.0.0.2"
- '127.0.0.3"
urls:

- exampla.com
- example.com
- exampli.com
- examplo.com
- examplu.com

18 Chapter 3. Structure

20
21
22
23
24
25
26
27
28
29

30

32

33

35

36

38
39
40
41
2
43
44
45
46
47
48
49

50

Photon Documentation, Release 0.4

ping.sample.py

from pprint import pprint
from photon import Photon

photon = Photon('ping.sample.yaml')
hosts = photon.settings.get['hosts']
ping = photon.ping_handler ()

###
Let's start off with localhost to demonstrate the handling of the probe-function:

pprint (hosts)

a = hosts['addresses'] [0]
ping.probe = a

if ping.probelal ['up']:

print ('$s is reachable - %s ms rtt in average' %(a, ping.probelal['rtt']['avg']))
else:
print ('$s could not be reached!' %(a))

pprint (ping.probe)
print ('="' % 8)

###

You can also pass a complete list to probe. This will be faster, because the list is [

The status per host will be overwritten with new information if it encounters the samq

ping.probe = hosts['addresses']
pprint (ping.probe)

print ('These are the statistics so far:')
pprint (ping.status)

print ('-' % 8)

###

Another round of pings to demonstrate the handling of the status-function:
ping.probe = hosts['urls']

if ping.status['ratio'] <= 0.75:
print ('more than three quarters of all addresses are not reachable!!l!")

print ('The statistics have changed now:"'")
pprint (ping.status)

rocessed 1in |
p host again:

See also:

Example Settings File, Mail Tool Example, Ping Tool Example

3.2. Tools 19

Photon Documentation, Release 0.4

3.2.4 Signal Tool

class tools.signal.Signal (m, pid, sudo=True, cmdd_if no_pid=None)
The Signal tool can send signals to processes via k111, returning the results.

Parameters
* pid - Either the full path to the pidfile (e.g. /var/run/proc.pid) or the pid as number

* sudo — Prepend sudo before command. (Make sure to be root yourself if set to False or
expect errors. Further for unattended operation add the user to sudoers file.)

_Signal__signal (sig, verbose=None)
Helper class preventing code duplication..

Parameters
* sig - Signal to use (e.g. “HUP”, “ALRM”)
e verbose — Overwrite photon.Photon.m () ‘s verbose

Returns photon.Photon.m() ‘s result of killing pid with specified pid

alrm
Returns photon.Photon.m () ‘s result of killing pid using SIGALRM
hup
Returns photon.Photon.m () ‘s result of killing pid using SIGHUP
int
Returns photon.Photon.m () ‘s result of killing pid using SIGINT with visible shell warn-
ing
kill
Returns photon.Photon.m () ‘sresult of killing pid using SIGKILL with visible shell warn-
ing
quit
Returns photon.Photon.m () ‘sresultof killing pid using SIGQUIT with visible shell warn-
ing
stop
Returns photon.Photon.m() ‘s result of killing pid using SIGSTOP with visible shell
warning
usrl
Returns photon.Photon.m () ‘s result of killing pid using SIGUSR1
usr2

Returns photon.Photon.m () ‘s result of killing pid using SIGUSR2

3.2.5 Template Tool

class tools.template.Template (m, template, fields=None)
The Template tool helps to process on strings.

Parameters

20 Chapter 3. Structure

Photon Documentation, Release 0.4

* template — The initial template to start with.

— If it’s value is recognized by util.locations.search_location() (ak.aisa
filename) the file contents will be loaded as template.

Note: If the file is not found, you will be doing string processing on the filename instead
of the contents!

» fields — Initially set up fields. Can be done later, using sub ()
The templating-language itself are normal Template strings, see there for syntax.
raw
Returns The raw template
sub
Parameters fields — Set fields to substitute

Returns Substituted Template with given fields. If no fields were set up beforehand, raw () is
used.

write (filename, append=True, backup=True)
Parameters
* filename — File to write into

* append — Either append to existing content (if not already included) or completely re-
place filename

* backup - Create a backup of filename before writing. Only applies when append is set

3.3 Utility

This is the toolbox used by The core:
See also:

Settings, Meta, Photon

As well as used by the Tools:

See also:

Git Tool, Mail Tool, Ping Tool, Signal Tool

Note: If you have no explicit reason, do not use the functions here directly.

* Always try to work trough photon.Photon and it’s handlers.
* If you discover you are repeatedly calling backend functions

consider adding a tool for that job!

3.3.1 Files

util.files.read_£ile (filename)
Reads files

3.3. Utility 21

http://docs.python.org/3/library/string.html#template-strings

Photon Documentation, Release 0.4

Parameters filename — The full path of the file to read

Returns The content of the file as string (if filename exists)

Note: If filename‘s content is empty, None will also returned.

To check if a file really exists use util.locations.search_location ()

util.files.read_3json (filename)
Reads json files

Parameters filename — The full path to the json file
Returns Loaded json content as represented data structure

util.files.read_yaml (filename, add_constructor=None)
Reads YAML files

Parameters
* filename — The full path to the YAML file
* add_constructor — A list of yaml constructors (loaders)
Returns Loaded YAML content as represented data structure
See also:
util.structures.yaml_str_join(),util.structures.yaml_loc_join ()

util.files.write_f£ile (filename, content)
Writes files

Parameters
* filename — The full path of the file to write (enclosing folder must already exist)
* content - The content to write

Returns The size of the data written

util.files.write_json (filename, content)
Writes json files

Parameters
* filename — The full path to the json file
* content — The content to dump
Returns The size written

util.files.write_yaml (filename, content)
Writes YAML files

Parameters
* filename — The full path to the YAML file
* content - The content to dump

Returns The size written

22 Chapter 3

. Structure

Photon Documentation, Release 0.4

3.3.2 Locations
util.locations.backup_location (src, loc=None)
Writes Backups of locations
Parameters
* src — The source file/folder to backup
* loc — The target folder to backup into

The backup will be called src + util.system.get_timestamp (). * If loc left to
none, the backup gets written in the same folder like src resides in

— Otherwise the specified path will be used.

util.locations.change_location (src, tgt, move=False, verbose=True)
Copies/moves/deletes locations

Parameters
* src — Source location where to copy from
* tgt — Target location where to copy to

— To backup src, set tgt explicitly to True. rgt will be set to src + ‘_backup_’ +
util.system.get_timestamp () then

* move — Deletes original location after copy (a.k.a. move)
— To delete src, set tgt explicitly to False and move to True (be careful!!1!)
* verbose — Show warnings

util.locations.get_locations ()
Compiles default locations

Returns A dictionary with folders as values:

*‘home_dir’: Your home-directory (~)
e‘call_dir’: Where you called the first Python script from. (argv [0])
*‘conf_dir’: The XDG_CONF IG_HOME-directory + photon (~/.config/photon)

*‘data_dir’: The XDG_DATA_HOME-directory + photon (~/.local/share/photon)

Note:
*Both search _location () and make locations () have the argument locations.

oIf locations is set to None (by default), it will be filled with the output of get_ locations ().

util.locations.make_ locations (locations=None, verbose=True)
Creates folders

Parameters

* locations — A list of folders to create (can be a dictionary, see note below)

* verbose — Warn if any folders were created

Note:

3.3. Utility

23

Photon Documentation, Release 0.4

oIf locations is not a list, but a dictionary, all values in the dictionary will be used (as specified in
util.structures.to_list ())

oIf locations is set to None (by default), it will be filled with the output of get_locations ().

util.locations.search_location (loc, locations=None, -critical=False, create_in=None, ver-

bose=True)
Locates files with a twist:

*Check the existence of a file using the full path in loc
eSearch for the filename loc in locations

*Create it’s enclosing folders if the file does not exist. use create_in

Parameters
¢ loc - Filename to search

* locations — A list of possible locations to search within (can be a dictionary, see note
below)

* critical — Tears down (using util.system.shell notify () with state set to
True) whole application if file was not found

e create_in — If loc was not found, the folder create_in is created. If locations is a dictio-
nary, create_in can also specify a key of locations. The value will be used then.

* verbose - Pass verbose flag to make locations ()

Returns The full path of /oc in matched location

Note:

oIf locations is not a list, but a dictionary, all values in the dictionary will be used (as specified in
util.structures.to_1list ())

oIf locations is set to None (by default), it will be filled with the output of get_locations ().

3.3.3 Structures
util.structures.dict_merge (0, V)
Recursively climbs through dictionaries and merges them together.
Parameters
* o — The first dictionary
* v — The second dictionary

Returns A dictionary (who would have guessed?)

Note: Make sure 0 & v are indeed dictionaries, bad things will happen otherwise!

util.structures.to_1list (i, use_keys=False)
Converts items to a list.

Parameters

e i — Jtem to convert

24 Chapter 3. Structure

Photon Documentation, Release 0.4

— Ifiis None, the result is an empty list

— If i is ‘string’, the result won’t be [’s’, 't’, 'r’,...] rather more like
["string’]

— If i is a nested dictionary, the result will be a flattened list.
* use_keys — If i is a dictionary, use the keys instead of values
Returns All items in i as list

util.structures.yaml_loc_join (/, n)
YAML loader to join paths

The keywords come directly from util.locations.get_locations (). See there!

Returns A path seperator (/) joined string with keywords extended. Used in
settings.Settings.load/()

See also:
The YAML files mentioned in Example Settings File, Mail Tool Example, Ping Tool Example

util.structures.yaml_str_join ([, n)
YAML loader to join strings

The keywords are as following:
*hostname: Your hostname (from util.system.get_hostname ())
otimestamp: Current timestamp (from util.system.get_timestamp ())

Returns A non character joined string with keywords extended. Used in
settings.Settings.load()

Note: Be careful with timestamps when using a config in Settings.

See also:

The YAML files mentioned in Example Settings File, Mail Tool Example, Ping Tool Example

3.3.4 System

util.system.get_hostname ()
Determines the current hostname by probing uname -n. Falls back to hostname in case of problems.

Tears down (using util.system.shell_notify () with state set to True) whole application if both
failed (usually they don’t but consider this if you are debugging weird problems..)

Returns The hostname as string. Domain parts will be split off

util.system.get_timestamp (time=True, precice=False)
What time is it?

Parameters
* time — Append —%$H. %M. %S to the final string.
* precice — Append -%f to the final string. Is only recognized when time is set to True

Returns A timestamp string of now in the format $Y. $m.$d-%H. %M. %$S-%£

3.3. Utility 25

Photon Documentation, Release 0.4

See also:

strftime.org is awesome!

util.system.shell_notify (msg, state=False, more=None, exitcode=None, verbose=True)
A pretty long wrapper for a print () function. But this print () is the only one in Photon.

Note: This method is just a helper method within photon. If you need this functionality use
photon.Photon.m () instead

Parameters

msg — The message to show

state — The message will be prefixed with [szate]

— If False (default): Prefixed with ~

— If None: Prefixed with [WARNING]

— If True: Prefixed with [FATAL] and the exitcode will be set (see below)

more — Something to add to the message (see below)

— Anything you have. Just for further information.

— Will be displayed after the message, pretty printed using pprint .pformat ()

exitcode — Tears down (using util.system.shell notify () with state set to
True) whole application with given code

verbose — Show message or not (see below)
— Ifsetto False, youcanuse shell notify () for the dictionary it returns.

— Will be overruled if exitcode is set.

Returns A dictionary containing untouched msg, more and verbose

util.system.shell_run (¢md, cin=None, cwd=None, timeout=10, critical=True, verbose=True)
Runs a shell command within a controlled environment.

Note: This method is just a helper method within photon. If you need this functionality use
photon.Photon.m/() instead

Parameters

cmd — The command to run

— A string one would type into a console like git push —-u origin master.
— Will be splitusing shlex.split ().

— Itis possible to use a list here, but then no splitting is done.

cin — Add something to stdin of cmmd

cwd — Run cmd insde specified current working directory

timeout — Catch infinite loops (e.g. ping). Exit after timeout seconds

critical - If set to True: Tears down (using util.system.shell notify()
with state set to True) whole application on failure of cmd

verbose — Show messages and warnings

26

Chapter 3. Structure

http://strftime.org/
http://docs.python.org/3/library/functions.html#print
http://docs.python.org/3/library/functions.html#print
http://docs.python.org/3/library/pprint.html#pprint.pformat
http://docs.python.org/3/library/shlex.html#shlex.split

Photon Documentation, Release 0.4

Returns
A dictionary containing the results from running cmd with the following:
e ‘command’: cmd
e ‘stdin’: cin (If data was set in cin)
e ‘cwd’: ewd (If cwd was set)
* ‘exception’: exception message (If an exception was thrown)
* ‘timeout’: timeout (If a timeout exception was thrown)
* ‘stdout’: List from stdout (If any)
* ‘stderr’: List from stderr (If any)
* ‘returncode’: The returncode (If not any exception)

 ‘out’: The most urgent message as joined string. (‘exception’ > ‘stderr’ > ‘stdout’)

| am lost:

* genindex
* modindex

e search

3.3. Utility 27

Photon Documentation, Release 0.4

28

Chapter 3. Structure

CHAPTER 4

Info

The info file

The info file is not vital to Photon, it just helps to share common values between documentation and the package
builder (setup file).

info.author ()

Returns The main author (last entry of contributors ())
info.contributors ()

Returns A list of all contributors
info.contributors_str ()

Returns The contributors () as comma joined string
info.email ()

Returns Main author () ‘s mail
info.pkg_name ()

Returns The package name (on pypi)
info.release()

Returns Current release string

Current 0.4
info.url()

Returns The repo url (on github)
info.version ()

Returns Current version string

Current 0.4 (Release: 0.4)

29

Photon Documentation, Release 0.4

30

Chapter 4. Info

Python Module Index

info, 29

m

meta, 11

photon, 12

S

settings, 7

t

tools.git, 14
tools.mail, 16
tools.ping, 17
tools.signal, 20
tools.template, 20
u

util.files, 21
util.locations, 23
util.structures, 24
util.system, 25

31

Photon Documentation, Release 0.4

32

Python Module Index

Index

Symbols

_Signal__signal() (tools.signal.Signal method), 20
_checkout() (tools.git.Git method), 14
_get_branch() (tools.git.Git method), 14
_get_remote() (tools.git.Git method), 14

_log() (tools.git.Git method), 14

_pull() (tools.git.Git method), 15

A

alrm (tools.signal.Signal attribute), 20
author() (in module info), 29

B

backup_location() (in module util.locations), 23
branch (tools.git.Git attribute), 15

C

change_location() (in module util.locations), 23
check_m() (in module photon), 14

cleanup (tools.git.Git attribute), 15

commit (tools.git.Git attribute), 15
contributors() (in module info), 29
contributors_str() (in module info), 29

D

dict_merge() (in module util.structures), 24

E

email() (in module info), 29

environment variable
XDG_CONFIG_HOME, 23
XDG_DATA_HOME, 23

G

get (settings.Settings attribute), 8
get_hostname() (in module util.system), 25
get_locations() (in module util.locations), 23
get_timestamp() (in module util.system), 25
Git (class in tools.git), 14

git_handler() (photon.Photon method), 12

H

hup (tools.signal.Signal attribute), 20

info (module), 29
int (tools.signal.Signal attribute), 20

K

kill (tools.signal.Signal attribute), 20

L

load() (meta.Meta method), 11
load() (settings.Settings method), 8
local (tools.git.Git attribute), 15
log (meta.Meta attribute), 11

log (tools.git.Git attribute), 15

M

m() (photon.Photon method), 12

Mail (class in tools.mail), 16

mail_handler() (photon.Photon method), 13
make_locations() (in module util.locations), 23
Meta (class in meta), 11

meta (module), 11

P

Photon (class in photon), 12

photon (module), 12

Ping (class in tools.ping), 17
ping_handler() (photon.Photon method), 13
pkg_name() (in module info), 29

probe (tools.ping.Ping attribute), 18
publish (tools.git.Git attribute), 15

Q

quit (tools.signal.Signal attribute), 20

R

raw (tools.template. Template attribute), 21

33

Photon Documentation, Release 0.4

read_file() (in module util.files), 21
read_json() (in module util.files), 22
read_yaml() (in module util.files), 22
release() (in module info), 29

remote (tools.git.Git attribute), 15
remote_url (tools.git.Git attribute), 15

S

s2m (photon.Photon attribute), 13
search_location() (in module util.locations), 24
send (tools.mail.Mail attribute), 16

Settings (class in settings), 7

settings (module), 7

shell_notify() (in module util.system), 26
shell_run() (in module util.system), 26
short_commit (tools.git.Git attribute), 15
Signal (class in tools.signal), 20
signal_handler() (photon.Photon method), 13
stage() (meta.Meta method), 11

status (tools.git.Git attribute), 15

status (tools.ping.Ping attribute), 18

stop (tools.signal.Signal attribute), 20

sub (tools.template. Template attribute), 21

T

tag (tools.git.Git attribute), 16

Template (class in tools.template), 20
template_handler() (photon.Photon method), 13
text (tools.mail.Mail attribute), 16

to_list() (in module util.structures), 24

tools.git (module), 14

tools.mail (module), 16

tools.ping (module), 17

tools.signal (module), 20

tools.template (module), 20

U

url() (in module info), 29

usrl (tools.signal.Signal attribute), 20
usr2 (tools.signal.Signal attribute), 20
util.files (module), 21

util.locations (module), 23
util.structures (module), 24
util.system (module), 25

Vv

version() (in module info), 29

W

write() (tools.template. Template method), 21
write_file() (in module util.files), 22
write_json() (in module util.files), 22
write_yaml() (in module util.files), 22

X

XDG_CONFIG_HOME, 23
XDG_DATA_HOME, 23

Y

yaml_loc_join() (in module util.structures), 25
yaml_str_join() (in module util.structures), 25

34

Index

	Photon Intro
	Examples

	Installation
	Structure
	The core
	Tools
	Utility

	Info
	Python Module Index

